The Iterative Solver Template Library

نویسندگان

  • Markus Blatt
  • Peter Bastian
چکیده

The numerical solution of partial differential equations frequently requires the solution of large and sparse linear systems. Using generic programming techniques like in C++ one can create solver libraries that allow efficient realization of “fine grained interfaces”, i. e. with functions consisting only of a few lines, like access to individual matrix entries. This prevents code replication and allows programmers to work more efficiently. In this paper we present the “Iterative Solver Template Library” (ISTL) which is part of the “Distributed and Unified Numerics Environment” (DUNE). It applies generic programming in C++ to the domain of iterative solvers of linear systems stemming from finite element discretizations. Those discretizations exhibit a lot of structure. Our matrix and vector interface supports a block recursive structure. I. E. each sparse matrix entry can be a sparse or a small dense matrix itself. Based on this interface we present efficient solvers that use the recursive block structure via template metaprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the generic parallelisation of iterative solvers for the finite element method

The numerical solution of partial differential equations frequently requires solving large and sparse linear systems. When using the Finite Element Method these systems exhibit a natural block structure that is exploited for efficiency in the “Iterative Solver Template Library” (ISTL). Based on existing sequential preconditioned iterative solvers we present an abstract parallelisation approach ...

متن کامل

The Use of Iterative Methods for finding the Latent Roots and Vectors of Matrices

1. D. J. Wheeler & J. P. Nash, "Digital and Analogue Computers and Computing Methods." Symposium at the 18th Applied Mechanics Division Conference of the American Society of Mechanical Engineers, University of Minnesota, June 18-20, 1953. 2. D. J. Wheeler, The Automatic Linear Equation Solver, University of Illinois Computer Library Routine No. 51. 3. J. N. Snyder, The Complete Linear Equation ...

متن کامل

A Message-Passing Distributed Memory Parallel Algorithm for a Dual-Code Thin Layer, Parabolized Navier-Stokes Solver

In this study, the results of parallelization of a 3-D dual code (Thin Layer, Parabolized Navier-Stokes solver) for solving supersonic turbulent flow around body and wing-body combinations are presented. As a serial code, TLNS solver is very time consuming and takes a large part of memory due to the iterative and lengthy computations. Also for complicated geometries, an exceeding number of grid...

متن کامل

Generic Programming for High Performance Numerical Linear Algebra

We present a generic programming methodology for expressing data structures and algorithms for high-performance numerical linear algebra. As with the Standard Template Library [14], our approach explicitly separates algorithms from data structures, allowing a single set of numerical routines to operate with a wide variety of matrix types, including sparse, dense, and banded. Through the use of ...

متن کامل

Equilibrium condition nonlinear modeling of a cracked concrete beam using a 2D Galerkin finite volume solver

A constitutive model based on two–dimensional unstructured Galerkin finite volume method (GFVM) is introduced and applied for analyzing nonlinear behavior of cracked concrete structures in equilibrium condition. The developed iterative solver treats concrete as an orthotropic nonlinear material and considers the softening and hardening behavior of concrete under compression and tension by using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006